Delay-Tolerant Networks for Space Combat Cloud

Scott Burleigh

Jet Propulsion Laboratory

California Institute of Technology

13 December 2018

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. (c) 2018 California Institute of Technology. Government sponsorship acknowledged.

Stage 1 Topology

Stage 1 Summary

- Stage 1: single-domain private network with TBD #N max clients.
 - Intra-constellation links
 - 255 satellites (8 links/sat)
 - Links RF or optical
 - 1 network/security domain (option to add commercial internet tunnel)
 - Timing precision consistent with GPS needs (~1nS on platform, ~5nS in six hop linkage)
 - Modest bandwidth performance (<1gpbs) at long distance GEO; 5-20
 Mbps at up to 2xGEO distances
 - Resiliency through mesh network

How does DTN help?

Benefits of DTN in Stage-1 space combat cloud:

- Performance
- 2. Routing
- Security 3.
- 4. Economy
- 5. Streaming
- Multicast 6.

Performance

- Satellite traffic will be subject to transient outages on handover from one ground station to the next, or from one GEO satellite to the next.
- If GEOs are used as the backbone, round-trip latency is on the order of 500 ms.
- Retransmission of lost data in a DTN occurs between topologically adjacent nodes inside the network, not end-toend between the source and destination. TCP/IP is used at the DTN "convergence layer", between BP nodes, not end-to-end.
- So data lost (during a handover or elsewhere) are quickly recovered inside the network, improving throughput.

Advantage

Average Goodput (Mbit/sec) over Delay (ms)

Routing

- The satellites in the combat cloud will be in motion, so all communication opportunities will be transient.
- But those opportunities will be predictable, because the orbital movement will not be random.
- Unlike Internet routing protocols, the "contact graph routing" algorithms developed for DTN were designed for exactly this sort of topology.
 - Routes are computed locally from a known contact plan.
 - Contacts are not discovered randomly; they are scheduled.
 - Although connectivity changes constantly, the contact plan remains static and routes do not change.

Security

- The DTN bundle security protocol provides authentication, integrity protection, and confidentiality end-to-end at the "bundle layer" of the protocol stack.
- Multiple cipher suites can be supported within the same network, and even within a single bundle.
- Individual blocks of a bundle can be protected in different ways, potentially using different cipher suites.
- Bundle-in-bundle encapsulation provides defense against traffic analysis.

Economy

- The DTN "delay-tolerant payload conditioning" applicationlayer protocol was specifically designed to support situational awareness applications.
- Small situational telemetry records are aggregated into larger application data units that are issued in DTN bundles.
- While aggregation is in progress, each new telemetry record is passed to a mission-defined "callback" function that performs application data elision as needed: redundant or superseded records may be removed from the aggregation as newer information arrives.
- The bundles that are issued contain only information of value, and protocol overhead is kept to a minimum.

Streaming

- End-to-end latency in streaming of audio, video, and telemetry introduces conflict between the requirement for timeliness and the requirement for accuracy and completeness.
- The DTN bundle streaming service resolves this conflict by managing two classes of output at the receiving node:
 - Data that were received in-order, end-to-end, are presented immediately for real-time display, possibly with some gaps.
 - Any data loss results in retransmission; the retransmitted data are necessarily forwarded out of order.
 - Data received out of order are merged with the in-order data in a time-ordered database, from which a gap-free stream can be reviewed in a separate replay display.

Jet Propulsion Laboratory, California Institute of Technology Multicast

- Because retransmission of lost data in DTN is performed between adjacent nodes in the network topology, rather than end-to-end, bundle multicast can be comprehensively reliable.
- Bundle multicast is multi-source and delay-tolerant.
- Streaming data, e.g., can be securely and reliably multicast over any combination of satellite and ground links.

Questions?